【精品】五年级数学说课稿范文汇总七篇
作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写说课稿,说课稿有助于教学取得成功、提高教学质量。说课稿应该怎么写呢?下面是小编帮大家整理的五年级数学说课稿7篇,仅供参考,希望能够帮助到大家。
五年级数学说课稿 篇1一、教材分析
《分数的意义》是本单元教学内容的主干,也是本单元教学的重点,“分数”的知识对于学生来说并不是一张白纸。是他们在四年级学习中已借助操作、直观初步认识了分数。知道了分数的各部分名称、读写法、以及知道把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,可以用分数来表示的基础上进行学习的。这节课的学习是系统学习分数的开始,也是把分数的概念由感性上升到理性的开始。尽管教材在知识呈现上显得比较简单,但是使学生学起来有一定的难度,因为知识点较多,一共有五个。
分别是分数的意义、分数各部分的名称和含义、以及分数单位和单位“1”的含义等。而理解分数的意义是这节课的教学重点,也是学生的学习重点。这节课教学难点是单位“1”的理解。学好这节课是后面学习真分数和假分数、分数基本性质以及分数应用题的重要前提,对以后学习有关分数知识有着举足轻重的作用。
教学目标:
(1)通过直观教学和操作等活动引导学生经历探究分数意义的过程,理解单位“1”的含义,初步掌握分数的概念
(2)在活动中培养学生分析、综合、比较、抽象、根据等初步的逻辑思维能力
(3)体验学习数学的成功和愉悦,培养学生学习数学的积极情感
教学重点:
分数意义的归纳与单位“1”的理解
教学难点:
把多个物体组成的一个整体看作单位“1”
教学准备:
每小组一张圆形纸片,一条一分米长的线段,6个正方体,8个苹果图
二、说教法、学法
1、教法
“分数的意义”一课,是小学数学概念教学比较抽象,学生较难理解的特点,为能使学生较好地理解掌握这一内容,采用启发式教学。教学中充分利用直观演示,遵循概念教学的原则,启发引导学生由感性认识到理解认识,由具体到抽象,充分调动学生学习的积极性、主动性、发展学生的思维能力。
2、学法
古人云:“授人一鱼,仅供一饭之需,授人一渔,则终身受用无穷”。现代教学认为教学的任务不仅是传授知识,而重要的是教给学生获取知识的方法。因此,在教学中特别注重加强对学生学法指导。
(1)通过教学使学生掌握从具体直观到抽象概括的思维方法,为了使学生建立清晰的分数意义概念,为学生提供了丰富的感性材料。
(2)引导多种感官参与学习,培养学生良好的观察能力、分析能力。
三、说教学程序
(一)谈话导入,由旧引新
首先,通过激趣谈话问学生:把蛋糕分给4个学生,怎样分大家才满意?根据学生的已有经验,很快回答是14,然后出示一个不平均分的蛋糕图,问:这样的一份能用14表示吗?两幅图进行比较,得出:分数是建立在平均分的基础上。
(二)探究新知,建构概念分4个环节来探究
1、独立动手做分数
如果用图表示14,100个人会有100种表示方法,老师为你们每组提供了一些材料,你们能分别表示出它的14吗?
本环节充分利用“分数初步认识”中学到的知识,通过对具体、形象的实物图片的观察,学生亲自动手操作,参与获得知识的过程。
2、动手操作,感知意义
学生分五人一组,每组有一套学具,然后让学生选一种材料自己动手创造分数,并提出学习要求。学生操作,汇报交流展示学生把不同物体看做一个整体所创造的分数。
本环节在大量感性认识基础上,充分调动学生眼、口、脑、手等多种感官参与认识活动。
3、观察比较、抽象单位“1”
思考:你们能给平均分的对象分分类吗?
引导生归纳:一个物体,一个计量单位,一个整体都中可以用自然数“1”来表示,通常叫做单位“1”。
讨论:单位“1”为什么要加引号?它同自然数1的意义一样吗?
你能举例说说我们生活中哪些可以看作单位“1”。
本环节,通过小组讨论比较异同,全班交流,全面具体地感知单位“1”,这是理解分数意义的关键。
4、抽象概括、归纳分数的意义
(1)学生尝试自己归纳分数的意义。
(2)理解“若干”一词的意义。
(3)结合学生发言,板书分数的意义。
本环节引导学生由感性认识到理性认识,由具体到抽象,逐步深化,理解分数的意义。
四、分层练习,巩固深化。
为巩固所学新知识,设计了基础练习和拓展练习,贯穿“讲练结合,练为主线”的教学原则,通过巩固学生对新知识理解掌握,发展学生的思维能力。
五、引导反思,全课小结
今天这节课你有哪些收获?对自己的学习满意吗?请说说自己的感受和体验。
五年级数学说课稿 篇2我将分以下五个部分进行说课
一、对本课的理解和思考
二、对教学目标和重难点的把握
三、对教学设计的思考
四、对教法、学法的理解
五、说教学过程
一、对本课的理解和思考
1、对教材的理解
教材地位和作用
梯形面积的计算是是在学生掌握了平行四边形、三角形和梯形的特征以及掌握了长方形、正方形面积计算公式的基础上学习的。本单元知识的学习,能满足解决日常生活和生产中的实际问题的需要,要进一步学习圆的面积和立体图形的表面积的基础。
本单元包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。平行四边形面积计算的教学是以长方形面积计算做基础的,先借助数方格的方法,得到平行四边形的面积,再通过割补、平移,把平行四边形转化成长方形,继而推导出平行四边形的面积公式。三角形的面积计算又是以平行四边形的面积计算做基础的。最后是梯形的面积,既可以转化成三角形,又可以以平行四边形面积的计算做基础。三种基础图形面积计算的联系比较紧密,探索的要求逐步提高,组合图形的面积更是以这些基本图形为基础来计算的
2、对学生的分析
学情分析
(1)学生已有的能力基础:
五年级学生,善于独立思考,乐于合作交流,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力,他们已经掌握了梯形的特征和长方形、平行四边形以及三角形的面积推导过程,知道了拼摆、割补、平移的基本操作方法,也理解了数学的“转化”思想。这些都为本节课的学习奠定了坚实的基础
(2)学生能力的 ……此处隐藏6345个字……基础。
(二)教学重难点的确立
教学要求:
1、从学生原有的知识经验出发,通过学生的积极思考、主动探索、小组讨论、全班交流和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行估算、口算、笔算。
2、在探索过程中,培养学生观察、比较、归纳与概括的能力和用数学语言进行表述交流的能力,渗透转化思想。
3、使学生体验学习过程是一个不断遇到问题、不断探究、解决问题方法的过程,感受探索成功的愉悦,感受数学与生活的联系。
教学重点:
学生自己探索获得“小数乘以小数”的计算方法。培养学生自主探索的能力,即独立获取知识的能力。
教学难点:
通过转化探索活动,使学生发现因数中小数位数与积中小数位数的对应关系,悟出“两个因数中的小数位数就是积中的小数的位数”。
二、说教法、学法
紧紧依托学生已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“产生疑问、进行探索、释疑、运用”这一循环过程中,自然地发现“积中小数位数与因数小数位数”的关系。
1、以学生为主体,发展学生的自主学习能力与思维能力。
数学课堂教学要注重发展学生思维、提高学生能力,着眼于学生可持续发展能力的培养。为此,在课堂教学中,创设条件,积极营造学生自由学习的时间与空间,让学生在独立思考、自主探索、交流学习中来感悟、探究、发现小数乘以小数的算理和算法,让学生经历对知识的再发现、再创造过程,从而培养学生的创新意识与创造能力。如课堂中首先呈现房间平面图,启发学生获取信息,提出问题,列出算式说明及依据。教学计算要善于捕捉差距,关注生成。如:通过以上学生知识形成的过程与经验,紧接着出示阳台的面积是多少平方米,学生自主用已有的生活经验探索两位小数与两位小数相乘中两个因数与积的小数位数的关系。并在小组里讨论过程中学生自主生成,小数乘小数的计算法则,从而真正体现是学生迈过学习,自主获得知识的生成过程和计算方法。
2、正确把握教师主导与学生主体的关系。
本课力求在每一个环节的推进过程中都先让学生独立思考、独立探究,再让小组合作讨论探究,教师只起穿针引线的作用,给予学生应有的尊重与信任,提供其广阔的思考空间与交流机会,使其通过个体思考,小组或组际交流逐步得出自身认可的计算法则或规律,充分体现学生是课堂学习的主人。比如:教材重点组织学生探索笔算的方法,先告诉学生可以把竖式中的两个小数都看成整数来计算,再结合直观图示讨论,按整数相乘后怎样才能得到原有的数?启发学生理解,把两个因数看成整数,等于把原来两个因数分别乘以10得到整数,因数扩大100倍,积也就积也就相应扩大100倍。因此要得到原来算式的积,应用整数相乘的积反过来除以100。除此以外,学生可以通过单位换算把米化成分米得到的积后再换算成平方米。学生可以通过对笔算结果与估计结果的比较,判断笔算
结果是否合理,从而确认相应计算方法的正确性。在引入“3.6X2.8”时要求学生先用两种方法估算,并说明正确答案的范围,根据以上推断,让学生独立计算,为接下来笔算方法提供一种支持。
三、说教学程序
为充分体现以上的一些设想,本课的具体过程如下:
1、创设情境,引出可探索的“数学问题”。
数学来源于生活,通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到了数学与生活的密切联系,认识到计算确实是一种需要,产生急于要弄明白的求知心理,激起了探索的欲望与兴趣,为下一步的自主探究创造了良好的心理条件。如在创设情景引入的过程中,教师问:“你获取了哪些信息?”可以体现教师创造性使用教材,让学生自己提出问题,自己列式,自己解答,使枯燥知识变成善于学习的知识。
2、对算理和算法的自主探索。
在整个过程中,教师放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。再通过相互的交流,不断产生认知冲突,思维产生碰撞的火花,营造出继续探索规律,解释新问题的氛围。
(1)独立尝试。学生在独立计算4.2×3.6时,势必会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,让教师充分了解学生计算小数乘以小数时在认知上的难点,为教师接下来有针对性、有重点的教学找准了最佳的切入口。
(2)交流各自的算法与想法。在交流中,教师让不同层次的学生畅谈自己的算法与想法,及时掌握学生不同的思维生长点和认知区别。比如在计算小数乘小数的过程中,教师首先让学生估算2.8X3.6的结果最大是多少,然后让学生再进行计算。教师充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生思维的碰撞与冲突,为其留下思维的空间。
3、运用规律来解决问题,让学生进一步感悟算理,获得方法。
运用学生自己发现的规律来指导计算,一方面可加深对算理的理解,提高对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验成功的愉悦,符合学生的认知规律和心理规律。如在课堂练习环节中,设计了练一练的习题,先让学生独立完成,再组织学生交流讨论,再指名在全体学生面前谈自己的想法与算法,通过计算与交流,学生对小数乘以小数的算法有了一定的感性认识,同时对因数中有几位小数,积中就有几位小数这一规律有了初步的感悟。
4、运用法则,进行专项训练与开放训练,以拓宽思维,促进发展。
小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。为此,设计了一些专项性习题,根据算式特点在积或因数中点上小数点的正确位置,以更一步强化积中的小数位数由因数中小数的位数来决定这一规律。为了拓宽学生的思维空间和想象空间,安排了一组开放性练习,使学生的基础知识得到落实,也使学生的学习潜能得到开发,探索能力得到训练。最后还安排了一个实践题:一种西装面料,每米售价58.5元。买这样的面料5.2米,应付多少元?(先估算的数,在计算)并应用本节课学习的知识计算出物品的总价。让学生在颇有兴趣的计算中感受到学习数学的目的,就是将探索获得的数学知识应用于生活工作中去,应用数学知识分析解决一些生活问题。
总之,本课力求改变以往计算教学中学生主动参与少,以计算技能的培养为主,以正确计算为最终目标的教学方法,而是始终关注学生的发展,创设各种条件让学生参与到知识的产生、形成、发展、运用过程中,通过自主学习、同桌讨论、合作交流,去发现和创造小数乘以小数的算理和算法,从而使不同层次水平的学生都在原有基础上有所提高,使学生的情感、态度、学习思维能力、合作探究能力等得到培养和发展,使数学思想方法得到渗透。